论文标题

夺走莱因哈特的力量

Taking Reinhardt's Power Away

论文作者

Matthews, Richard

论文摘要

我们研究了非平凡基本嵌入的概念$ j:v \ rightarrow v $,假设$ v $不得不满足$ ZFC $而没有电源,但具有收集方案。我们表明,在额外的假设是Cofinal的其他假设和$ v _ {\ textrm {Crit}(J)} $的其他假设下,不存在这种嵌入,或者是相关选择方案所拥有的。然后,我们研究阶级强制的对称子模型中收集实例的失败。

We study the notion of non-trivial elementary embeddings $j : V \rightarrow V$ under the assumption that $V$ satisfies $ZFC$ without Power Set but with the Collection Scheme. We show that no such embedding can exist under the additional assumption that it is cofinal and either $V_{\textrm{crit}(j)}$ is a set or that the Dependent Choice Schemes holds. We then study failures of instances of collection in symmetric submodels of class forcings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源