论文标题

使用RF传感的美国手语识别

American Sign Language Recognition Using RF Sensing

论文作者

Gurbuz, Sevgi Z., Gurbuz, Ali C., Malaia, Evie A., Griffin, Darrin J., Crawford, Chris, Rahman, M. Mahbubur, Kurtoglu, Emre, Aksu, Ridvan, Macks, Trevor, Mdrafi, Robiulhossain

论文摘要

许多用于人类计算机互动的技术是为了听到个人而设计的,并依靠发声的语音,从而排除了聋人社区中的美国手语(ASL)用户,从而使这些进步受益。虽然在使用视频或可穿戴手套的ASL认可方面取得了长足的进步,但在房屋中使用视频引起了隐私问题,而可穿戴的手套严重限制了运动并侵犯日常生活。方法:本文提议将RF传感器用于为聋人社区服务的HCI应用。多频RF传感器网络用于获取无创,非接触式测量ASL标记的非接触式测量,而与照明条件无关。使用短时傅立叶变换的时频分析揭示了由于微多普勒效应而引起的RF数据中存在的独特运动模式。使用机器学习(ML)研究了RF ASL数据的语言特性。结果:通过分形复杂性衡量的ASL签名的信息内容比日常生活中遇到的其他上身活动的内容大。这可以用来区分日常活动与签名,而RF数据的功能表明,非签名者的模仿签名与本机ASL签名可区分99 \%。 RF传感器网络数据的特征级融合用于在20个天然ASL符号的分类中实现72.5 \%的精度。含义:RF传感可用于研究ASL和设计聋哑智能环境的动态语言特性,以实现ASL的非侵入性,远程识别。 ML算法应在本机(而不是模仿)ASL数据上进行基准测试。

Many technologies for human-computer interaction have been designed for hearing individuals and depend upon vocalized speech, precluding users of American Sign Language (ASL) in the Deaf community from benefiting from these advancements. While great strides have been made in ASL recognition with video or wearable gloves, the use of video in homes has raised privacy concerns, while wearable gloves severely restrict movement and infringe on daily life. Methods: This paper proposes the use of RF sensors for HCI applications serving the Deaf community. A multi-frequency RF sensor network is used to acquire non-invasive, non-contact measurements of ASL signing irrespective of lighting conditions. The unique patterns of motion present in the RF data due to the micro-Doppler effect are revealed using time-frequency analysis with the Short-Time Fourier Transform. Linguistic properties of RF ASL data are investigated using machine learning (ML). Results: The information content, measured by fractal complexity, of ASL signing is shown to be greater than that of other upper body activities encountered in daily living. This can be used to differentiate daily activities from signing, while features from RF data show that imitation signing by non-signers is 99\% differentiable from native ASL signing. Feature-level fusion of RF sensor network data is used to achieve 72.5\% accuracy in classification of 20 native ASL signs. Implications: RF sensing can be used to study dynamic linguistic properties of ASL and design Deaf-centric smart environments for non-invasive, remote recognition of ASL. ML algorithms should be benchmarked on native, not imitation, ASL data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源