论文标题

偏心 - 轨道极限 - 主质辐射II:1PN校正对领先的质量和subleading-lux磁通序列以及整个扰动4PN通量

Eccentric-orbit extreme-mass-ratio-inspiral radiation II: 1PN correction to leading-logarithm and subleading-logarithm flux sequences and the entire perturbative 4PN flux

论文作者

Munna, Christopher, Evans, Charles R.

论文摘要

在最近的一篇论文中,我们表明,对于偏丽的轨道极端比例,启发了纽顿(Newtonian(PN)通量术语(PN)通量术语(辐射到无限)的分析形式,可以通过牛顿四翼螺旋体力矩的傅立叶光谱范围内的总和来确定。我们进一步表明,相关旋律 - 统计PN序列的偏心依赖性的重要组成部分,在对称的质量比$ν$中以最低顺序为基础,也来自牛顿四极杆矩。一旦将该部分分组出来,其余的偏心依赖性就会更容易由黑洞扰动理论确定。在本文中,我们展示了如何对整个领先的序列进行1pn校正的序列,即出现在pn订单上的术语$ x^{3k+1} \ log^k(x)$和$ x^{3k+5/2} \ 5/2} \ log^k(x)由牛顿质量八杆,牛顿当前四极杆和1点四极杆矩的傅立叶光谱确定。我们还开发了一种猜想(但合理的)形式,以校正为$ν$的二阶对领先日志的1pn校正。此外,与第一篇论文类似,我们表明,这些相同的源多极矩还产生了1PN校正的非平凡部分,校正了subleading-logarithm系列,并且剩余的偏心依赖性(以$ν$的最低顺序为$ν$)可以更容易地使用黑洞触发理论来确定。我们使用此方法来确定扰动性(即$ν$中的最低顺序)的整个分析偏心度依赖性,4pn非log项,$ \ MATHCAL {R} _4(e_t)$和$ \ MATHCAL {z} _4(e_t)_4(e_t)$,分别能量和词汇和词汇和脉动动量。

In a recent paper we showed that for eccentric-orbit extreme-mass-ratio inspirals the analytic forms of the leading-logarithm energy and angular momentum post-Newtonian (PN) flux terms (radiated to infinity) can, to arbitrary PN order, be determined by sums over the Fourier spectrum of the Newtonian quadrupole moment. We further showed that an essential part of the eccentricity dependence of the related subleading-logarithm PN sequences, at lowest order in the symmetric mass ratio $ν$, stems as well from the Newtonian quadrupole moment. Once that part is factored out, the remaining eccentricity dependence is more easily determined by black hole perturbation theory. In this paper we show how the sequences that are the 1PN corrections to the entire leading-logarithm series, namely terms that appear at PN orders $x^{3k+1} \log^k(x)$ and $x^{3k+5/2} \log^k(x)$ (for PN compactness parameter $x$ and integers $k\ge 0$), at lowest order in $ν$, are determined by the Fourier spectra of the Newtonian mass octupole, Newtonian current quadrupole, and 1PN part of the mass quadrupole moments. We also develop a conjectured (but plausible) form for 1PN correction to the leading logs at second order in $ν$. Further, in analogy to the first paper, we show that these same source multipole moments also yield nontrivial parts of the 1PN correction to the subleading-logarithm series, and that the remaining eccentricity dependence (at lowest order in $ν$) can then more easily be determined using black hole perturbation theory. We use this method to determine the entire analytic eccentricity dependence of the perturbative (i.e., lowest order in $ν$) 4PN non-log terms, $\mathcal{R}_4(e_t)$ and $\mathcal{Z}_4(e_t)$, for energy and angular momentum respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源