论文标题
10 Gyr M矮人周围的高能辐射环境:终于可居住吗?
The High-Energy Radiation Environment Around a 10 Gyr M Dwarf: Habitable at Last?
论文作者
论文摘要
年轻的M矮人的X射线和紫外线活动的高水平可能会在液态水宜居区内绕过温带,地球行星的快速大气逃逸。但是,绕着越来越老的行星上的次要气氛可能是稳定的,并且是稳定的,并为生物标志物搜索提供了更多有希望的候选者。我们介绍了Barnard的Star(GJ 699)的新HST和Chandra观察,这是10 Gyr Old M3.5矮人,作为Mega-Muscles计划的一部分。尽管Barnard的星星的年龄和较长的轮换期,但我们观察到两个FUV($δ_{130} $ $ \ $ \ $ 5000; $ e_ {130} $ $ \ $ 10 $^$ 10 $^{29.5} $ erg everg a) $ \ sim $ 25 \%的高能量耀斑占空比(此处定义为恒星处于耀斑状态的时间的一部分)。 A 5 A -10 $ $ m $ m的GJ 699是创建的,并用于评估可居住区中假设的,未磁化的地面星球的大气稳定性($ r_ {hz} $ \ $ \ sim $ 0.1 $ 0.1 au)。热和非热的逃生模型都表明(1)$ quiescent $恒星XUV通量不会导致强烈的大气逃逸:大气加热速率与现代地球上的高太阳能活动时期相当,并且(2)$ flare $环境可以将大气驱动到flare unive unive clippersive $ $ noverally univers $ $ $ $ $ $ $ $ $的环境中的损失: 87地球大气通过热过程和$ \ $ \ $ \ $ 3的地球气氛分别通过离子损失过程分别通过$ \ $ \ $ 3地球大气。这些结果表明,如果岩石行星的大气可以在最初的$ \ sim $ 5的高恒星活动中生存,或者如果可以形成或获得第二代大气层,则耀斑占空比可以是控制恒星参数,以构成旧M恒星周围类似地球大气层的稳定性。
High levels of X-ray and UV activity on young M dwarfs may drive rapid atmospheric escape on temperate, terrestrial planets orbiting within the liquid water habitable zone. However, secondary atmospheres on planets orbiting older, less active M dwarfs may be stable and present more promising candidates for biomarker searches. We present new HST and Chandra observations of Barnard's Star (GJ 699), a 10 Gyr old M3.5 dwarf, acquired as part of the Mega-MUSCLES program. Despite the old age and long rotation period of Barnard's star, we observe two FUV ($δ_{130}$ $\approx$ 5000s; $E_{130}$ $\approx$ 10$^{29.5}$ erg each) and one X-ray ($E_{X}$ $\approx$ 10$^{29.2}$ erg) flares, and estimate a high-energy flare duty cycle (defined here as the fraction of the time the star is in a flare state) of $\sim$ 25\%. A 5 A - 10 $μ$m SED of GJ 699 is created and used to evaluate the atmospheric stability of a hypothetical, unmagnetized terrestrial planet in the habitable zone ($r_{HZ}$ $\sim$ 0.1 AU). Both thermal and non-thermal escape modeling indicate (1) the $quiescent$ stellar XUV flux does not lead to strong atmospheric escape: atmospheric heating rates are comparable to periods of high solar activity on modern Earth, and (2) the $flare$ environment could drive the atmosphere into a hydrodynamic loss regime at the observed flare duty cycle: sustained exposure to the flare environment of GJ 699 results in the loss of $\approx$ 87 Earth atmospheres Gyr$^{-1}$ through thermal processes and $\approx$ 3 Earth atmospheres Gyr$^{-1}$ through ion loss processes, respectively. These results suggest that if rocky planet atmospheres can survive the initial $\sim$ 5 Gyr of high stellar activity, or if a second generation atmosphere can be formed or acquired, the flare duty cycle may be the controlling stellar parameter for the stability of Earth-like atmospheres around old M stars.