论文标题
在勇敢的首位拍卖新世界中出价遮蔽
Bid Shading in The Brave New World of First-Price Auctions
论文作者
论文摘要
在线拍卖在在线广告中起着核心作用,这是行业可扩展性和增长的主要原因之一。随着拍卖的组织方式发生了重大变化,例如更改第二价格拍卖类型,广告客户和需求平台被迫适应新的波动性环境。出价是一种已知的技术,可以防止在拍卖系统中超额付款,该技术可以帮助维持第一价拍卖中的策略均衡,从而解决其最大的缺点之一。在这项研究中,我们提出了一种机器学习方法,以建模未经审核的在线优价广告拍卖的最佳出价。我们清楚地激励了该方法,并在主要需求侧平台上的离线和在线设置中进行了广泛的评估。与一系列性能指标的现有方法相比,结果表明了新方法的优越性和鲁棒性。
Online auctions play a central role in online advertising, and are one of the main reasons for the industry's scalability and growth. With great changes in how auctions are being organized, such as changing the second- to first-price auction type, advertisers and demand platforms are compelled to adapt to a new volatile environment. Bid shading is a known technique for preventing overpaying in auction systems that can help maintain the strategy equilibrium in first-price auctions, tackling one of its greatest drawbacks. In this study, we propose a machine learning approach of modeling optimal bid shading for non-censored online first-price ad auctions. We clearly motivate the approach and extensively evaluate it in both offline and online settings on a major demand side platform. The results demonstrate the superiority and robustness of the new approach as compared to the existing approaches across a range of performance metrics.