论文标题
多个信号分类算法的软阈值方案
Soft thresholding schemes for multiple signal classification algorithm
论文作者
论文摘要
多个信号分类算法(音乐)利用荧光强度的时间波动来通过计算精细样品网格上的超分辨率指示器函数的值来执行超分辨率显微镜。算法中的关键步骤是将测量值分离为信号和噪声子空间,基于一个称为阈值的单个用户指定参数。所得图像对此参数非常敏感,并且由多个实际因素产生的主观性使得难以确定正确的选择规则。我们通过提出从指示器功能设计的新的通用框架中得出的软阈值方案来解决此问题。我们表明,新方案可大大减轻硬阈值的主观性和敏感性,同时保持超分辨率能力。我们还使用各种指标函数评估了分辨率和对比度和对比度拒绝的权衡。通过此,我们对音乐剧的使用和进一步优化在各种实用场景中创建了重要的新见解。
Multiple signal classification algorithm (MUSICAL) exploits temporal fluctuations in fluorescence intensity to perform super-resolution microscopy by computing the value of a super-resolving indicator function across a fine sample grid. A key step in the algorithm is the separation of the measurements into signal and noise subspaces, based on a single user-specified parameter called the threshold. The resulting image is strongly sensitive to this parameter and the subjectivity arising from multiple practical factors makes it difficult to determine the right rule of selection. We address this issue by proposing soft thresholding schemes derived from a new generalized framework for indicator function design. We show that the new schemes significantly alleviate the subjectivity and sensitivity of hard thresholding while retaining the super-resolution ability. We also evaluate the trade-off between resolution and contrast and the out-of-focus light rejection using the various indicator functions. Through this, we create significant new insights into the use and further optimization of MUSICAL for a wide range of practical scenarios.