论文标题

基于切割有限元素

A reduced order model for a stable embedded boundary parametrized Cahn-Hilliard phase-field system based on cut finite elements

论文作者

Karatzas, Efthymios N., Rozza, Gianluigi

论文摘要

在目前的工作中,我们研究了一种剪切的有限元方法,用于源自第四阶非线性几何PDE的二阶方程的参数化系统,即cahn-hilliard系统。每当出现强大的非线性时,我们都设法解决了此类方法的不稳定性问题,并利用它们的灵活性对固定背景几何形状和网状特征 - 可以避免,例如在参数化的几何形状中,在整个阶水平上进行重新捕捉,以及在降低水平上引用几何形状的转换。作为一个最终目标,我们设法找到了一个有效的全局,涉及几何流形,并且独立于几何变化,减少订单基础。即使在数值实验验证的伪随机的初始数据中,pod-galerkin方法也表现出其强度。

In the present work, we investigate a cut finite element method for the parameterized system of second-order equations stemming from the splitting approach of a fourth order nonlinear geometrical PDE, namely the Cahn-Hilliard system. We manage to tackle the instability issues of such methods whenever strong nonlinearities appear and to utilize their flexibility of the fixed background geometry -- and mesh -- characteristic, through which, one can avoid e.g. in parametrized geometries the remeshing on the full order level, as well as, transformations to reference geometries on the reduced level. As a final goal, we manage to find an efficient global, concerning the geometrical manifold, and independent of geometrical changes, reduced order basis. The POD-Galerkin approach exhibits its strength even with pseudo-random discontinuous initial data verified by numerical experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源