论文标题

在对最小奇异值和离散噪声的平滑分析中

On the smoothed analysis of the smallest singular value with discrete noise

论文作者

Jain, Vishesh, Sah, Ashwin, Sawhney, Mehtaab

论文摘要

令$ a $为$ n \ times n $ real矩阵,让$ m $为$ n \ times n $随机矩阵,其条目为i.i.d sub-gaussian随机变量,其平均$ 0 $和差异$ 1 $。我们为$ s_n(A+M)$的研究做出了两项贡献,这是$ a+m $的最小单数值。 (1)我们证明所有$ε\ geq 0 $, $$ \ mathbb {p} [s_n(a + m)\leqε] = o(ε\ sqrt {n}) + 2e^{ - ω(n)},$$ 只有$ a $具有$ω(n)$单数值,即$ o(\ sqrt {n})$。这扩展了Rudelson和Vershynin的众所周知的结果,这需要$ a $的所有单数值为$ o(\ sqrt {n})$。 (2)我们证明了形式的任何界限 $ \ sup _ {\ | {a} \ | \ | \ leq n^{c_1}}} \ Mathbb {p} [s_n(a+m)\ leq n^{ - c_3}] 必须具有$ C_3 =ω(C_1 \ SQRT {C_2})$。这补充了Tao和Vu的结果,Tao和Vu证明了$ C_3 = O(C_1C_2 + C_1 + 1)$的界限,并反驳了他们对可能服用$ C_3 = O(C_1 + C_2)$的猜测。

Let $A$ be an $n\times n$ real matrix, and let $M$ be an $n\times n$ random matrix whose entries are i.i.d sub-Gaussian random variables with mean $0$ and variance $1$. We make two contributions to the study of $s_n(A+M)$, the smallest singular value of $A+M$. (1) We show that for all $ε\geq 0$, $$\mathbb{P}[s_n(A + M) \leq ε] = O(ε\sqrt{n}) + 2e^{-Ω(n)},$$ provided only that $A$ has $Ω(n)$ singular values which are $O(\sqrt{n})$. This extends a well-known result of Rudelson and Vershynin, which requires all singular values of $A$ to be $O(\sqrt{n})$. (2) We show that any bound of the form $$\sup_{\|{A}\|\leq n^{C_1}}\mathbb{P}[s_n(A+M)\leq n^{-C_3}] \leq n^{-C_2}$$ must have $C_3 = Ω(C_1 \sqrt{C_2})$. This complements a result of Tao and Vu, who proved such a bound with $C_3 = O(C_1C_2 + C_1 + 1)$, and counters their speculation of possibly taking $C_3 = O(C_1 + C_2)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源