论文标题

通过平面激光镜和单眼相机的感应融合完成深度完成

Depth Completion via Inductive Fusion of Planar LIDAR and Monocular Camera

论文作者

Fu, Chen, Dong, Chiyu, Mertz, Christoph, Dolan, John M.

论文摘要

现代的高清激光雷达对于商业自动驾驶车辆和小型室内机器人来说是昂贵的。解决此问题的一个负担得起的解决方案是将平面发光剂与RGB图像融合,以提供相似的感知能力。即使最新的方法提供了从有限的传感器输入中预测深度信息的方法,但它们通常是通过端到端融合体系结构对稀疏LIDAR特征和密集的RGB功能的简单串联。在本文中,我们引入了一个感应后融合块,该块更好地融合了受概率模型启发的不同传感器方式。拟议的演示和聚合网络传播了预测网络的混合上下文和深度特征,并作为深度完成的先验知识。该晚融合块使用密集的上下文特征来指导深度深度特征的演示深度预测。除了评估基准深度完成数据集(包括Nyudepthv2和Kitti)上的提议方法外,我们还测试了模拟平面LIDAR数据集的提出方法。我们的方法显示出与基准数据集和具有各种3D密度的模拟数据集上的先前方法相比,结果表现出了令人鼓舞的结果。

Modern high-definition LIDAR is expensive for commercial autonomous driving vehicles and small indoor robots. An affordable solution to this problem is fusion of planar LIDAR with RGB images to provide a similar level of perception capability. Even though state-of-the-art methods provide approaches to predict depth information from limited sensor input, they are usually a simple concatenation of sparse LIDAR features and dense RGB features through an end-to-end fusion architecture. In this paper, we introduce an inductive late-fusion block which better fuses different sensor modalities inspired by a probability model. The proposed demonstration and aggregation network propagates the mixed context and depth features to the prediction network and serves as a prior knowledge of the depth completion. This late-fusion block uses the dense context features to guide the depth prediction based on demonstrations by sparse depth features. In addition to evaluating the proposed method on benchmark depth completion datasets including NYUDepthV2 and KITTI, we also test the proposed method on a simulated planar LIDAR dataset. Our method shows promising results compared to previous approaches on both the benchmark datasets and simulated dataset with various 3D densities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源