论文标题
通过拓扑元素提高虚拟现实神经元追踪的可用性
Improving the Usability of Virtual Reality Neuron Tracing with Topological Elements
论文作者
论文摘要
连接组学领域的研究人员正在努力重建大脑中神经连接图,以便在大脑如何处理信息的基本层面上了解。构建该接线图是通过通过使用荧光显微镜成像技术获取的高分辨率图像堆栈来追踪神经元来完成的。尽管已经提出了大量自动跟踪算法,但这些算法通常依赖于数据中的本地特征,并且在嘈杂的数据或模棱两可的情况下失败,需要耗时的手动校正。结果,手动和半自动追踪方法仍然是创建准确的神经元重建的最新方法。我们提出了一种新的半自动方法,该方法使用拓扑功能来指导用户追踪神经元,并将此方法集成到以前用于手动跟踪的虚拟现实(VR)框架中。我们的方法增加了可视化和与拓扑元素的相互作用,从而可以快速理解和追踪复杂的形态。在我们的试点研究中,神经科学家表现出强烈的偏爱使用我们的工具,而不是先前的方法,报道了在追踪过程中减少疲劳,并赞扬了更好地了解可能的路径和替代方案的能力。对痕迹的定量评估表明,与完全手动方法相比,用户的追踪速度提高,同时保持相似的精度。
Researchers in the field of connectomics are working to reconstruct a map of neural connections in the brain in order to understand at a fundamental level how the brain processes information. Constructing this wiring diagram is done by tracing neurons through high-resolution image stacks acquired with fluorescence microscopy imaging techniques. While a large number of automatic tracing algorithms have been proposed, these frequently rely on local features in the data and fail on noisy data or ambiguous cases, requiring time-consuming manual correction. As a result, manual and semi-automatic tracing methods remain the state-of-the-art for creating accurate neuron reconstructions. We propose a new semi-automatic method that uses topological features to guide users in tracing neurons and integrate this method within a virtual reality (VR) framework previously used for manual tracing. Our approach augments both visualization and interaction with topological elements, allowing rapid understanding and tracing of complex morphologies. In our pilot study, neuroscientists demonstrated a strong preference for using our tool over prior approaches, reported less fatigue during tracing, and commended the ability to better understand possible paths and alternatives. Quantitative evaluation of the traces reveals that users' tracing speed increased, while retaining similar accuracy compared to a fully manual approach.