论文标题

用于过程挖掘的可解释人工智能:一种新颖的本地解释方法进行预测过程监测的一般概述和应用

Explainable Artificial Intelligence for Process Mining: A General Overview and Application of a Novel Local Explanation Approach for Predictive Process Monitoring

论文作者

Mehdiyev, Nijat, Fettke, Peter

论文摘要

当代过程感知信息系统具有记录过程执行过程中产生的活动的能力。为了利用这些过程特定的细粒数据,过程挖掘最近已成为有前途的研究学科。作为过程挖掘的重要分支,预测业务流程管理,追求目标,以产生前瞻性,预测性见解以塑造业务流程。在这项研究中,我们提出了一个概念框架,旨在建立和促进对决策环境的理解,基本的业务流程以及用户特征的性质,以开发可解释的业务流程预测解决方案。因此,关于该框架的理论和实际含义,本研究提出了一种新型的当地的事后解释方法,为深度学习分类器提供了一种预期,该方法有望促进领域专家证明模型决策的合理性。与替代性流行的基于扰动的局部解释方法相反,本研究通过使用深层神经网络学到的中间潜在空间表示来定义验证数据集的本地区域。为了验证拟议的解释方法的适用性,使用了沃尔沃IT比利时的事件管理系统提供的现实生活过程日志数据。采用的深度学习分类器在ROC曲线下实现了良好的性能。生成的本地解释也可视化并通过相关的评估措施进行了可视化和呈现,这些措施有望增加用户对黑盒模型的信任。

The contemporary process-aware information systems possess the capabilities to record the activities generated during the process execution. To leverage these process specific fine-granular data, process mining has recently emerged as a promising research discipline. As an important branch of process mining, predictive business process management, pursues the objective to generate forward-looking, predictive insights to shape business processes. In this study, we propose a conceptual framework sought to establish and promote understanding of decision-making environment, underlying business processes and nature of the user characteristics for developing explainable business process prediction solutions. Consequently, with regard to the theoretical and practical implications of the framework, this study proposes a novel local post-hoc explanation approach for a deep learning classifier that is expected to facilitate the domain experts in justifying the model decisions. In contrary to alternative popular perturbation-based local explanation approaches, this study defines the local regions from the validation dataset by using the intermediate latent space representations learned by the deep neural networks. To validate the applicability of the proposed explanation method, the real-life process log data delivered by the Volvo IT Belgium's incident management system are used.The adopted deep learning classifier achieves a good performance with the Area Under the ROC Curve of 0.94. The generated local explanations are also visualized and presented with relevant evaluation measures that are expected to increase the users' trust in the black-box-model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源