论文标题
使用A3C学习和残留的复发神经网络的随机边缘云计算环境的动态调度
Dynamic Scheduling for Stochastic Edge-Cloud Computing Environments using A3C learning and Residual Recurrent Neural Networks
论文作者
论文摘要
基于互联网(IoT)的应用程序无处不在的应用程序导致了雾计算范式的出现,该应用程序允许无缝利用移动边缘和云资源。由于资源能力受到限制,物联网中的移动性因素,资源异质性,网络层次结构和随机行为,因此在此类环境中有效安排应用程序任务是具有挑战性的。基于启发式方法和基于强化学习的方法缺乏普遍性和快速适应性,因此无法最佳解决这个问题。他们也无法利用时间工作负载模式,仅适用于集中设置。然而,已知异步 - 辅助-Actor-Critic-Critic-Critic(A3C)学习可以迅速适应具有较少数据和剩余复发性神经网络(R2N2)的动态场景,以快速更新模型参数。因此,我们为随机边缘环境提出了一个基于A3C的实时调度程序,允许分散学习,同时跨多个代理。我们使用R2N2体系结构来捕获大量主机和任务参数以及时间模式,以提供有效的调度决策。所提出的模型是自适应的,并且能够根据应用程序要求调整不同的超参数。我们通过灵敏度分析来阐明我们选择超参数。与最先进的算法相比,对现实世界数据集进行的实验表明,分别在能耗,响应时间,服务级别验证和运行成本方面有显着改善,分别分别为14.4%,7.74%,31.9%和4.64%。
The ubiquitous adoption of Internet-of-Things (IoT) based applications has resulted in the emergence of the Fog computing paradigm, which allows seamlessly harnessing both mobile-edge and cloud resources. Efficient scheduling of application tasks in such environments is challenging due to constrained resource capabilities, mobility factors in IoT, resource heterogeneity, network hierarchy, and stochastic behaviors. xisting heuristics and Reinforcement Learning based approaches lack generalizability and quick adaptability, thus failing to tackle this problem optimally. They are also unable to utilize the temporal workload patterns and are suitable only for centralized setups. However, Asynchronous-Advantage-Actor-Critic (A3C) learning is known to quickly adapt to dynamic scenarios with less data and Residual Recurrent Neural Network (R2N2) to quickly update model parameters. Thus, we propose an A3C based real-time scheduler for stochastic Edge-Cloud environments allowing decentralized learning, concurrently across multiple agents. We use the R2N2 architecture to capture a large number of host and task parameters together with temporal patterns to provide efficient scheduling decisions. The proposed model is adaptive and able to tune different hyper-parameters based on the application requirements. We explicate our choice of hyper-parameters through sensitivity analysis. The experiments conducted on real-world data set show a significant improvement in terms of energy consumption, response time, Service-Level-Agreement and running cost by 14.4%, 7.74%, 31.9%, and 4.64%, respectively when compared to the state-of-the-art algorithms.