论文标题
X射线散射图像的多个属性学习模型的交互式视觉研究
Interactive Visual Study of Multiple Attributes Learning Model of X-Ray Scattering Images
论文作者
论文摘要
现有的用于深度学习的交互式可视化工具主要应用于对自然图像的神经网络模型的训练,调试和完善。但是,对于具有多个结构属性的X射线图像分类的特定应用,视觉分析工具缺乏。在本文中,我们提出了一个互动系统,供域科学家在视觉上研究应用于X射线散射图像的多个属性学习模型。它允许域科学家在模型预测输出,实际标签和神经网络的发现特征空间中定义的嵌入式空间中交互式探索这种重要类型的科学图像。允许用户灵活地选择实例图像,其簇,并就属性的指定视觉表示形式进行比较。探索是由与属性之间相互关系相关的模型性能的表现的指导,这通常会影响学习准确性和有效性。因此,该系统支持领域科学家改善训练数据集并模型,找到可疑属性标签,并识别离群图像或虚假数据簇。案例研究和科学家的反馈证明了其功能和实用性。
Existing interactive visualization tools for deep learning are mostly applied to the training, debugging, and refinement of neural network models working on natural images. However, visual analytics tools are lacking for the specific application of x-ray image classification with multiple structural attributes. In this paper, we present an interactive system for domain scientists to visually study the multiple attributes learning models applied to x-ray scattering images. It allows domain scientists to interactively explore this important type of scientific images in embedded spaces that are defined on the model prediction output, the actual labels, and the discovered feature space of neural networks. Users are allowed to flexibly select instance images, their clusters, and compare them regarding the specified visual representation of attributes. The exploration is guided by the manifestation of model performance related to mutual relationships among attributes, which often affect the learning accuracy and effectiveness. The system thus supports domain scientists to improve the training dataset and model, find questionable attributes labels, and identify outlier images or spurious data clusters. Case studies and scientists feedback demonstrate its functionalities and usefulness.