论文标题
丰富的普里斯特利空间的二元性理论
Duality theory for enriched Priestley spaces
论文作者
论文摘要
一词石型二元性通常是指一侧的一类晶格或其他部分有序结构与另一侧的其他部分有序结构之间的双重等效性。本文是一项更大的努力的一部分,旨在将石材型二元性的网络从订购到公制结构,更一般地扩展到富含量子的类别。特别是,我们改善了以前的工作,并展示了[0,1]富集的Priestley Space类别的某些二元性结果以及[0,1]富集的关系如何仅限于函数。在更广泛的背景下,我们研究了富含量化的普里斯特利空间和连续函子的类别,重点是识别该类别双重性质的代数性质的属性。
The term Stone-type duality often refers to a dual equivalence between a category of lattices or other partially ordered structures on one side and a category of topological structures on the other. This paper is part of a larger endeavour that aims to extend a web of Stone-type dualities from ordered to metric structures and, more generally, to quantale-enriched categories. In particular, we improve our previous work and show how certain duality results for categories of [0,1]-enriched Priestley spaces and [0,1]-enriched relations can be restricted to functions. In a broader context, we investigate the category of quantale-enriched Priestley spaces and continuous functors, with emphasis on those properties which identify the algebraic nature of the dual of this category.