论文标题
超球多项式的均匀估计值
Uniform pointwise estimates for ultraspherical polynomials
论文作者
论文摘要
我们证明了雅各比多项式的两参数家族的界限。我们的界限意味着估计由单位球体上杰出的拉普拉斯人和亚拉普拉斯人的光谱分析在任意维度上产生的功能,并且有助于证明这些操作员的尖锐乘数定理。
We prove pointwise bounds for two-parameter families of Jacobi polynomials. Our bounds imply estimates for a class of functions arising from the spectral analysis of distinguished Laplacians and sub-Laplacians on the unit sphere in arbitrary dimension, and are instrumental in the proof of sharp multiplier theorems for those operators.