论文标题
跨域的适应性,差异最小化,用于文本独立的法医扬声器验证
Cross-domain Adaptation with Discrepancy Minimization for Text-independent Forensic Speaker Verification
论文作者
论文摘要
扬声器验证的法医音频分析提供了独特的挑战,这是由于参考和自然主义现场记录之间的位置/场景不确定性和多样性不匹配。缺乏真正的自然主义法医音频语料库,具有地面说话者身份是该领域的主要挑战。由于域的不匹配和性能损失,很难直接采用小规模的域特异性数据来训练复杂的神经网络体系结构。另外,多个声学环境的跨域扬声器验证是一项具有挑战性的任务,可以推进音频取证研究。在这项研究中,我们介绍了在多个声学环境中收集的CRSS-Forensics音频数据集。我们使用Voxceleb数据预先培训了基于CNN的网络,然后是一种方法,该方法通过CRSS-Forensics的干净语音微调高级网络层的一部分。基于这个微调模型,我们将嵌入空间中的域特异性分布与差异损失和最大平均差异(MMD)保持一致。这在清洁集合上保持有效的性能,同时将模型概括为其他声学域。从结果来看,我们证明了不同的声学环境会影响说话者验证性能,并且我们提出的跨域适应方法可以显着改善这种情况下的结果。
Forensic audio analysis for speaker verification offers unique challenges due to location/scenario uncertainty and diversity mismatch between reference and naturalistic field recordings. The lack of real naturalistic forensic audio corpora with ground-truth speaker identity represents a major challenge in this field. It is also difficult to directly employ small-scale domain-specific data to train complex neural network architectures due to domain mismatch and loss in performance. Alternatively, cross-domain speaker verification for multiple acoustic environments is a challenging task which could advance research in audio forensics. In this study, we introduce a CRSS-Forensics audio dataset collected in multiple acoustic environments. We pre-train a CNN-based network using the VoxCeleb data, followed by an approach which fine-tunes part of the high-level network layers with clean speech from CRSS-Forensics. Based on this fine-tuned model, we align domain-specific distributions in the embedding space with the discrepancy loss and maximum mean discrepancy (MMD). This maintains effective performance on the clean set, while simultaneously generalizes the model to other acoustic domains. From the results, we demonstrate that diverse acoustic environments affect the speaker verification performance, and that our proposed approach of cross-domain adaptation can significantly improve the results in this scenario.