论文标题
可解释的深层多模式图像超分辨率
Interpretable Deep Multimodal Image Super-Resolution
论文作者
论文摘要
多模式图像超分辨率(SR)是高分辨率图像的重建,借助另一种图像模式,高分辨率观察。尽管现有的深层多模型并未结合有关图像SR的域知识,但我们提出了一个多模式的深网设计,该网络设计集成了耦合的稀疏先验,并允许将其他模式的信息有效融合到重建过程中。我们的方法灵感来自一种用于耦合卷积稀疏编码的新型迭代算法,从而通过设计产生了可解释的网络。我们将模型应用于由RGB图像引导的近红外图像的超分辨率。实验结果表明,我们的模型优于最先进的方法。
Multimodal image super-resolution (SR) is the reconstruction of a high resolution image given a low-resolution observation with the aid of another image modality. While existing deep multimodal models do not incorporate domain knowledge about image SR, we present a multimodal deep network design that integrates coupled sparse priors and allows the effective fusion of information from another modality into the reconstruction process. Our method is inspired by a novel iterative algorithm for coupled convolutional sparse coding, resulting in an interpretable network by design. We apply our model to the super-resolution of near-infrared image guided by RGB images. Experimental results show that our model outperforms state-of-the-art methods.