论文标题
自偶踢伊辛模型中光谱形式的统计数据
Statistics of the Spectral Form Factor in the Self-Dual Kicked Ising Model
论文作者
论文摘要
我们通过提供每个时刻的精确下限并在数值上验证后者饱和,从而计算自动踢ising模型中光谱形式的完整概率分布。我们表明,如果人们识别适当的随机矩阵合奏,则在很大程度上,概率分布与随机矩阵理论的预测完全一致。我们发现,该合奏不是由对称的随机单位矩阵组成的循环正交,并且与时间反向不变的进化运算符相关 - 但是在更受限制的对称空间上的随机矩阵集合(取决于该空间的均等数量,该空间是$ {sp(sp(n)/u(n)/u(n)/u(n)/u(n)/u(n)} $(n)} $ {n)} $ { $ {o(2n)/{o(n)\!\ times \!o(n)}} $)。即使后者的集合产生的平均光谱形式与圆形正交集合相同,它们也会显示出显着增强的波动。这种行为是由于最近确定的自动踢球模型的其他反对称对称性。
We compute the full probability distribution of the spectral form factor in the self-dual kicked Ising model by providing an exact lower bound for each moment and verifying numerically that the latter is saturated. We show that at large enough times the probability distribution agrees exactly with the prediction of Random Matrix Theory if one identifies the appropriate ensemble of random matrices. We find that this ensemble is not the circular orthogonal one - composed of symmetric random unitary matrices and associated with time-reversal-invariant evolution operators - but is an ensemble of random matrices on a more restricted symmetric space (depending on the parity of the number of sites this space is either ${Sp(N)/U(N)}$ or ${O(2N)/{O(N)\!\times\!O(N)}}$). Even if the latter ensembles yield the same averaged spectral form factor as the circular orthogonal ensemble they show substantially enhanced fluctuations. This behaviour is due to a recently identified additional anti-unitary symmetry of the self-dual kicked Ising model.