论文标题

更少的模型和更少的噪音:使用子空间预测降低宇宙学可观察力的维度

Fewer Mocks and Less Noise: Reducing the Dimensionality of Cosmological Observables with Subspace Projections

论文作者

Philcox, Oliver H. E., Ivanov, Mikhail M., Zaldarriaga, Matias, Simonovic, Marko, Schmittfull, Marcel

论文摘要

创建准确,低噪声协方差矩阵代表了现代宇宙学中的巨大挑战。我们提出了一种形式主义,通过投影到特定于模型的子空间中,将任意可观察物压缩到少数垃圾箱中,该子空间最大程度地减少了先前的对数可能性误差。较低的维度导致协方差矩阵噪声的急剧减少,从而大大减少了需要计算的模拟数量。给定理论模型,一组先验和协方差的简单模型,我们的方法通过使用奇异值分解来构建接近欧几里得的可观察的基础。通过限制到前几个基础向量,我们可以在较低维的子空间中捕获几乎所有约束功率。与常规方法不同,该方法可以针对特定的分析进行定制,并捕获Fisher矩阵中不存在的非线性性,从而确保可以复制全部可能性。该过程通过Boss DR12模拟目录的功率谱进行全面分析来验证,这表明96箱功率光谱可以用12个子空间系数代替,而不会偏向输出宇宙学;这允许仅使用$ \ sim 100 $模拟进行准确的参数推断。这种分解有助于对功率光谱协方差的准确测试;对于最大的Boss数据块,我们发现:(a)分析协方差提供准确的模型(有或不带有三光谱术语); (b)使用Multidark-Patchy模拟的样本协方差会导致$ \ sim0.5σ$ shift in $ω_m$,除非应用子空间投影。该方法很容易扩展到高阶统计数据; $ \ sim 2000 $ -bin Bispectrum只能将其压缩到$ \ sim 10 $系数中,从而可以使用几个模型进行准确的分析,而无需增加垃圾箱尺寸。

Creating accurate and low-noise covariance matrices represents a formidable challenge in modern-day cosmology. We present a formalism to compress arbitrary observables into a small number of bins by projection into a model-specific subspace that minimizes the prior-averaged log-likelihood error. The lower dimensionality leads to a dramatic reduction in covariance matrix noise, significantly reducing the number of mocks that need to be computed. Given a theory model, a set of priors, and a simple model of the covariance, our method works by using singular value decompositions to construct a basis for the observable that is close to Euclidean; by restricting to the first few basis vectors, we can capture almost all the constraining power in a lower-dimensional subspace. Unlike conventional approaches, the method can be tailored for specific analyses and captures non-linearities that are not present in the Fisher matrix, ensuring that the full likelihood can be reproduced. The procedure is validated with full-shape analyses of power spectra from BOSS DR12 mock catalogs, showing that the 96-bin power spectra can be replaced by 12 subspace coefficients without biasing the output cosmology; this allows for accurate parameter inference using only $\sim 100$ mocks. Such decompositions facilitate accurate testing of power spectrum covariances; for the largest BOSS data chunk, we find that: (a) analytic covariances provide accurate models (with or without trispectrum terms); and (b) using the sample covariance from the MultiDark-Patchy mocks incurs a $\sim 0.5σ$ shift in $Ω_m$, unless the subspace projection is applied. The method is easily extended to higher order statistics; the $\sim 2000$-bin bispectrum can be compressed into only $\sim 10$ coefficients, allowing for accurate analyses using few mocks and without having to increase the bin sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源