论文标题
顺序的子空间搜索功能性贝叶斯优化,包括实验者直觉
Sequential Subspace Search for Functional Bayesian Optimization Incorporating Experimenter Intuition
论文作者
论文摘要
我们提出了一种用于贝叶斯功能优化的算法 - 也就是说,找到优化过程的功能 - 在实验者信念和直觉的指导下,涉及编码到高斯工艺协方差的最佳解决方案的预期特征(长度尺度,平滑度,环状等)。我们的算法生成了一系列由实验者的高斯过程中绘制的功能空间的有限维空间空间的序列。标准的贝叶斯优化均在每个子空间上应用,最佳解决方案被发现作为下一个子空间的起点(原点)。利用有效维度的概念,我们分析了算法的收敛性,并给予遗憾的是,只要存在有限的有效维度,就可以表明我们的算法在子线性时间内收敛。我们在模拟和现实世界实验中测试了算法,即盲目功能匹配,找到铝合金的最佳降水加长函数以及对深网的学习率计划优化。
We propose an algorithm for Bayesian functional optimisation - that is, finding the function to optimise a process - guided by experimenter beliefs and intuitions regarding the expected characteristics (length-scale, smoothness, cyclicity etc.) of the optimal solution encoded into the covariance function of a Gaussian Process. Our algorithm generates a sequence of finite-dimensional random subspaces of functional space spanned by a set of draws from the experimenter's Gaussian Process. Standard Bayesian optimisation is applied on each subspace, and the best solution found used as a starting point (origin) for the next subspace. Using the concept of effective dimensionality, we analyse the convergence of our algorithm and provide a regret bound to show that our algorithm converges in sub-linear time provided a finite effective dimension exists. We test our algorithm in simulated and real-world experiments, namely blind function matching, finding the optimal precipitation-strengthening function for an aluminium alloy, and learning rate schedule optimisation for deep networks.