论文标题
移位$ q = 0 $仿射代数的分类动作
A categorical action of the shifted $q=0$ affine algebra
论文作者
论文摘要
我们引入了一个名为“转移$ q = 0 $ offine代数”的新代数,该代数自然源于对拉(Grassmannians和N-Step Partial Flag品种)通过自然对应的研究。它具有与Finkelberg-Tsymbaliuk Arxiv定义的移动量子仿射代数相似的介绍:1708.01795V6。然后,我们对其分类作用进行定义,并证明对N-Step部分标志品种的相干滑轮的有限类别有一个分类动作。最后,作为一个应用程序,我们使用它来构建$ q = 0 $ offine hecke代数的分类操作,这些affine hecke代数在整个标志品种的相干滑轮的有限派生类别上。
We introduce a new algebra called the shifted $q=0$ affine algebra, which arises naturally from the study of coherent sheaves on Grassmannians and n-step partial flag varieties via a natural correspondence. It has similar presentation as the shifted quantum affine algebra defined by Finkelberg-Tsymbaliuk arXiv:1708.01795v6. We then give a definition of its categorical action and prove that there is a categorical action on the bounded derived categories of coherent sheaves on n-step partial flag varieties. Finally, as an application, we use it to construct a categorical action of the $q=0$ affine Hecke algebra on the bounded derived category of coherent sheaves on the full flag variety.