论文标题

边缘退化:算法和结构结果

Edge Degeneracy: Algorithmic and Structural Results

论文作者

Limnios, Stratis, Paul, Christophe, Perret, Joanny, Thilikos, Dimitrios M.

论文摘要

我们考虑了警察和强盗游戏,警察正在阻止图形的边缘,而强盗则占据了其顶点。在比赛的每一轮比赛中,警察都会选择一组边缘,然后在强盗有义务移动到另一个顶点后,最多$ s $ s $ unbocked Edges($ s $可以看作是强盗的速度)。这两个部分都完全了解对手的举动,而警察将所有事件都带到强盗位置时获胜。我们将$ g $的捕获成本引入了抢劫$ S $的抢劫犯。这定义了不变的层次结构,即$δ^{1} _ {\ rm e},δ^{2} _ {\ rm e},\ ldots,Δ^^{\ infty} _ {\ rm e}可接受性图的边缘 - 不变,即图形的{\ em edge-gasdmissibility}。我们证明,当$ s \ in \ in \ s \ in \ {1,2,\ infty \} $时,询问$δ^{s} _ {\ rm e}(g)\ leq k $的问题是多项式解决方案。我们的主要结果是用于边界边缘加入图的结构定理。我们证明,最多可以使用$(\ leq k)$ - 边缘的每图$ k $的每个边缘加入性图表,从图形开始,其所有顶点(除了一个可能是一个)的所有顶点最多都具有$ k $。我们的结构结果大约是因为这种结构生成的图形总是具有边缘加入的意义,最多具有2k-1 $。我们的证明是基于不包含$θ_{r} $作为沉浸式的图形的精确结构表征,其中$θ_{r} $是两个顶点上的图形和$ r $ ro $并行边缘。

We consider a cops and robber game where the cops are blocking edges of a graph, while the robber occupies its vertices. At each round of the game, the cops choose some set of edges to block and right after the robber is obliged to move to another vertex traversing at most $s$ unblocked edges ($s$ can be seen as the speed of the robber). Both parts have complete knowledge of the opponent's moves and the cops win when they occupy all edges incident to the robbers position. We introduce the capture cost on $G$ against a robber of speed $s$. This defines a hierarchy of invariants, namely $δ^{1}_{\rm e},δ^{2}_{\rm e},\ldots,δ^{\infty}_{\rm e}$, where $δ^{\infty}_{\rm e}$ is an edge-analogue of the admissibility graph invariant, namely the {\em edge-admissibility} of a graph. We prove that the problem asking wether $δ^{s}_{\rm e}(G)\leq k$, is polynomially solvable when $s\in \{1,2,\infty\}$ while, otherwise, it is NP-complete. Our main result is a structural theorem for graphs of bounded edge-admissibility. We prove that every graph of edge-admissibility at most $k$ can be constructed using $(\leq k)$-edge-sums, starting from graphs whose all vertices, except possibly from one, have degree at most $k$. Our structural result is approximately tight in the sense that graphs generated by this construction always have edge-admissibility at most $2k-1$. Our proofs are based on a precise structural characterization of the graphs that do not contain $θ_{r}$ as an immersion, where $θ_{r}$ is the graph on two vertices and $r$ parallel edges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源