论文标题

通过深度度量学习理解和利用因变量

Understanding and Exploiting Dependent Variables with Deep Metric Learning

论文作者

Mahony, Niall O', Campbell, Sean, Carvalho, Anderson, Krpalkova, Lenka, Velasco-Hernandez, Gustavo, Riordan, Daniel, Walsh, Joseph

论文摘要

深度度量学习(DML)方法学会学会代表较低维度的潜在空间的输入,因此该空间中表示之间的距离与预定义的相似性概念相对应。本文研究了如何在任意分类问题中的显着特征随时间变化或由于基础变量变化而变化的情况下如何利用DML的映射元素。此类可变特征的示例包括季节性和日期变化的室外场景的识别任务,用于自主导航和医学/伦理学研究分类任务中人类/动物受试者的年龄/性别变化。通过使用可视化工具来观察每个查询变量可用的每个查询变量的分布,每个变量对分类任务的影响可以更好地理解。基于这些关系,可以通过使用聚类算法来提高分类性能,在DML方法的推理阶段可以利用这些显着背景变量的先前信息。这项研究提出了这种方法,以建立查询背景变量的显着性和制定聚类算法,以更好地分离运行时间的潜在空间表示。本文还讨论了在线管理策略,以保留数据质量和多样性以及在DML方法中嵌入图库中每个类别的代表。我们还讨论了理解基础/多个变量与DML的相关性的潜在作品。

Deep Metric Learning (DML) approaches learn to represent inputs to a lower-dimensional latent space such that the distance between representations in this space corresponds with a predefined notion of similarity. This paper investigates how the mapping element of DML may be exploited in situations where the salient features in arbitrary classification problems vary over time or due to changing underlying variables. Examples of such variable features include seasonal and time-of-day variations in outdoor scenes in place recognition tasks for autonomous navigation and age/gender variations in human/animal subjects in classification tasks for medical/ethological studies. Through the use of visualisation tools for observing the distribution of DML representations per each query variable for which prior information is available, the influence of each variable on the classification task may be better understood. Based on these relationships, prior information on these salient background variables may be exploited at the inference stage of the DML approach by using a clustering algorithm to improve classification performance. This research proposes such a methodology establishing the saliency of query background variables and formulating clustering algorithms for better separating latent-space representations at run-time. The paper also discusses online management strategies to preserve the quality and diversity of data and the representation of each class in the gallery of embeddings in the DML approach. We also discuss latent works towards understanding the relevance of underlying/multiple variables with DML.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源