论文标题
通过M = 1 Amplituhedron
From hypertoric geometry to bordered Floer homology via the m=1 amplituhedron
论文作者
论文摘要
我们使用Arxiv中定义的代数:0905.1335在曲折的品种的同类杂种中,给出了复杂的超平面补体的福卡亚类别的猜想代数描述。我们通过证明这些代数与Ozsvath-Szabo Arxiv的作品出现的代数同构:1603.06559在边界的Heegaard Floer同源性Arxiv:0810.0687中,我们证明了这种构想的循环排列。在循环情况下,我们猜想的证据扩展了Karp-Williams Arxiv的工作:1608.08288在符号变化和M = 1 Amplituhedron的组合方面。然后,我们使用与循环排列相关的代数来构建GL(1 | 1)的分类作用。
We give a conjectural algebraic description of the Fukaya category of a complexified hyperplane complement, using the algebras defined in arXiv:0905.1335 from the equivariant cohomology of toric varieties. We prove this conjecture for cyclic arrangements by showing that these algebras are isomorphic to algebras appearing in work of Ozsvath-Szabo arXiv:1603.06559 in bordered Heegaard Floer homology arXiv:0810.0687. The proof of our conjecture in the cyclic case extends work of Karp-Williams arXiv:1608.08288 on sign variation and the combinatorics of the m=1 amplituhedron. We then use the algebras associated to cyclic arrangements to construct categorical actions of gl(1|1).