论文标题
多吉利白色矮人冷却延迟来自聚类增强的重力沉积
Multi-Gigayear White Dwarf Cooling Delays from Clustering-Enhanced Gravitational Sedimentation
论文作者
论文摘要
当理论冷却模型完全解释了WD Interiors的密集血浆物理学时,冷却白矮人(WDS)可以产生准确的年龄。我们使用MESA研究了一组大规模和超质量WDS(0.9-1.3 $ M_ \ odot $)的冷却模型,该模型以前的型号无法匹配基于GAIA DR2的运动学年龄指标。我们发现,该人群中的WD可以解释为C/O内核,在结晶之前,在强液体内部的沉积物出乎意料地快速$^{22} $ ne沉淀。我们建议这种快速沉积是由于液体C/O背景等离子体中$^{22} $ ne的固体簇的形成所致。我们表明,这些较重的固体簇比单个$^{22} $ ne离子更快,并提高了足够的沉积加热速率,可以显着缓慢的WD冷却。 MESA型号包括我们在WD Q分支机构上的汇总形成和沉积物的处方和沉积经验的冷却延迟约为$ 4 GYR,从而减轻了冷却年龄和运动学年龄之间的张力。然后,相同的模型预测冷却延迟与较低的质量WDS中的6 Gyr(0.6-0.8 $ m_ \ odot $)相吻合。此类延迟与当地100 PC WD样品和开放群集NGC 6791中WD种群的观察结果兼容,也可能需要。这些结果激发了对强烈液体状态和通过与观察到的WD冷却的比较测试的C/O/NE血浆混合物的物理学的新研究。
Cooling white dwarfs (WDs) can yield accurate ages when theoretical cooling models fully account for the physics of the dense plasma of WD interiors. We use MESA to investigate cooling models for a set of massive and ultra-massive WDs (0.9-1.3 $M_\odot$) for which previous models fail to match kinematic age indicators based on Gaia DR2. We find that the WDs in this population can be explained as C/O cores experiencing unexpectedly rapid $^{22}$Ne sedimentation in the strongly liquid interior just prior to crystallization. We propose that this rapid sedimentation is due to the formation of solid clusters of $^{22}$Ne in the liquid C/O background plasma. We show that these heavier solid clusters sink faster than individual $^{22}$Ne ions and enhance the sedimentation heating rate enough to dramatically slow WD cooling. MESA models including our prescription for cluster formation and sedimentation experience cooling delays of $\approx$4 Gyr on the WD Q branch, alleviating tension between cooling ages and kinematic ages. This same model then predicts cooling delays coinciding with crystallization of 6 Gyr or more in lower mass WDs (0.6-0.8 $M_\odot$). Such delays are compatible with, and perhaps required by, observations of WD populations in the local 100 pc WD sample and the open cluster NGC 6791. These results motivate new investigations of the physics of strongly coupled C/O/Ne plasma mixtures in the strongly liquid state near crystallization and tests through comparisons with observed WD cooling.