论文标题
在硅技术中的供体旋转
Donor spins in silicon for quantum technologies
论文作者
论文摘要
掺杂原子在半导体技术中无处不在,提供了基于现代数字信息时代的量身定制的电子特性。利用这些原子级对象的量子性质代表了一场新的令人兴奋的技术革命。在本文中,我们描述了在硅中用离子植入的供体旋转用于量子技术的使用。我们回顾了如何在硅中制造和操作单原子旋转量子,获得了一些最连贯的固态Qubits,我们讨论了扩展这些量子的途径以构建大量子处理器。带有大型核自旋的较重的组-V供体显示了核电共振,量子混乱和应变感应的电力四极耦合。供体集合可以耦合到微波腔以开发混合量子图灵机。计算单个捐赠者的确定性植入,再加上精确放置的新方法,将使单个捐赠者与行业标准的硅制造过程进行整合,从而使植入的供体成为第二次量子革命的主要物理平台。
Dopant atoms are ubiquitous in semiconductor technologies, providing the tailored electronic properties that underpin the modern digital information era. Harnessing the quantum nature of these atomic-scale objects represents a new and exciting technological revolution. In this article we describe the use of ion-implanted donor spins in silicon for quantum technologies. We review how to fabricate and operate single-atom spin qubits in silicon, obtaining some of the most coherent solid-state qubits, and we discuss pathways to scale up these qubits to build large quantum processors. Heavier group-V donors with large nuclear spins display electric quadrupole couplings that enable nuclear electric resonance, quantum chaos and strain sensing. Donor ensembles can be coupled to microwave cavities to develop hybrid quantum Turing machines. Counted, deterministic implantation of single donors, combined with novel methods for precision placement, will allow the integration of individual donors spins with industry-standard silicon fabrication processes, making implanted donors a prime physical platform for the second quantum revolution.