论文标题
使用生成对抗网络的标记为脑血管分割的TOF-MRA图像的匿名化
Anonymization of labeled TOF-MRA images for brain vessel segmentation using generative adversarial networks
论文作者
论文摘要
匿名和数据共享对于隐私保护和获取大型数据集以进行医学图像分析至关重要。这是一个巨大的挑战,尤其是对于神经影像。在这里,大脑的独特结构允许重新识别,因此需要非规定的匿名化。生成对抗网络(GAN)有可能在保留预测性能的同时提供匿名图像。分析脑血管分割,我们在飞行时间(TOF)磁共振血管造影(MRA)斑块中训练了3颗gan,以生成图像标签的生成:1)深卷积GAN,2)WASSERSTEIN-GAN具有梯度惩罚(WGAN-GP)(WGAN-GP)和3)WGAN-GP,WGAN-GP具有频谱标准化(WGAN-GP-SN)。每个GAN的生成图像标签用于训练U-NET进行分割,并对真实数据进行了测试。此外,我们在第二个数据集上使用传输学习应用了合成补丁。对于多达15名患者的越来越多的人,我们评估了有和没有预训练的实际数据上的模型性能。所有模型的性能通过骰子相似系数(DSC)和Hausdorff距离的第95个百分点(95HD)评估。比较了3个gan,对由WGAN-GP-SN产生的合成数据训练的U-NET显示出最高的预测血管的性能(DSC/95HD 0.82/28.97),这是通过对真实数据培训的U-NET进行了测量的(0.89/26.61)。与没有预训练相比,转移学习方法在相同的GAN中表现出卓越的性能,尤其是仅对于一名患者(0.91/25.68 vs. 0.85/27.36)。在这项工作中,合成图像标签对保留了可推广的信息,并显示出良好的血管分割性能。此外,我们表明合成补丁可用于带有独立数据的转移学习方法。这为克服稀缺数据和医学成像中匿名化的挑战铺平了道路。
Anonymization and data sharing are crucial for privacy protection and acquisition of large datasets for medical image analysis. This is a big challenge, especially for neuroimaging. Here, the brain's unique structure allows for re-identification and thus requires non-conventional anonymization. Generative adversarial networks (GANs) have the potential to provide anonymous images while preserving predictive properties. Analyzing brain vessel segmentation, we trained 3 GANs on time-of-flight (TOF) magnetic resonance angiography (MRA) patches for image-label generation: 1) Deep convolutional GAN, 2) Wasserstein-GAN with gradient penalty (WGAN-GP) and 3) WGAN-GP with spectral normalization (WGAN-GP-SN). The generated image-labels from each GAN were used to train a U-net for segmentation and tested on real data. Moreover, we applied our synthetic patches using transfer learning on a second dataset. For an increasing number of up to 15 patients we evaluated the model performance on real data with and without pre-training. The performance for all models was assessed by the Dice Similarity Coefficient (DSC) and the 95th percentile of the Hausdorff Distance (95HD). Comparing the 3 GANs, the U-net trained on synthetic data generated by the WGAN-GP-SN showed the highest performance to predict vessels (DSC/95HD 0.82/28.97) benchmarked by the U-net trained on real data (0.89/26.61). The transfer learning approach showed superior performance for the same GAN compared to no pre-training, especially for one patient only (0.91/25.68 vs. 0.85/27.36). In this work, synthetic image-label pairs retained generalizable information and showed good performance for vessel segmentation. Besides, we showed that synthetic patches can be used in a transfer learning approach with independent data. This paves the way to overcome the challenges of scarce data and anonymization in medical imaging.