论文标题

管子中的居民概率和ITô处理的途径不可逆性

Sojourn probabilities in tubes and pathwise irreversibility for Itô processes

论文作者

Kappler, Julian, Cates, Michael E., Adhikari, Ronojoy

论文摘要

ITô扩散过程的居民概率,即其留在光滑路径的管状邻居中的可能性,是路径概率研究的中心数量。对于$ n $二维的ITô处理具有状态依赖性的全等级扩散张量的过程,我们得出了在半径较小但有限且由环境欧几里得空间的指标固定的管中的寄居概率的一般表达。我们研究中的中心数量是轨迹首次离开试管的退出率。这具有解释为拉格朗日,可以直接在实验中进行测量,这与先前定义的居民概率不同,这些概率取决于国家依赖性扩散率的先验知识。我们发现,尽管在消失管半径的极限中,一对不同路径的居民概率的比率通常是分歧的,但对于一条路径而言相同,其时间逆转始终是收敛的和有限的。这为ITô过程提供了对不可逆转的不可逆转的方式,这对扩散率的状态依赖性不可知。对于一维系统,我们从漂移和扩散率方面为Lagrangian得出了明确的表达,发现我们的结果与先前报道的乘法噪声lagrangians不同。我们通过与数值模拟进行比较来确认我们的结果,并将我们的理论与Stratonovich Lagrangian进行乘法噪声联系起来。对于一维系统,我们讨论在哪些条件下,一对前进路径的遗体概率消失的划线限制比率会恢复已建立的路径熵产生。最后,我们为一维示例系统证明了屏障交叉的最可能的管子敏感地取决于管半径,因此,在光滑的参考路径周围的波动量的耐受量。

The sojourn probability of an Itô diffusion process, i.e. its probability to remain in the tubular neighborhood of a smooth path, is a central quantity in the study of path probabilities. For $N$-dimensional Itô processes with state-dependent full-rank diffusion tensor, we derive a general expression for the sojourn probability in tubes whose radii are small but finite, and fixed by the metric of the ambient Euclidean space. The central quantity in our study is the exit rate at which trajectories leave the tube for the first time. This has an interpretation as a Lagrangian and can be measured directly in experiment, unlike previously defined sojourn probabilities which depend on prior knowledge of the state-dependent diffusivity. We find that while in the limit of vanishing tube radius the ratio of sojourn probabilities for a pair of distinct paths is in general divergent, the same for a path and its time-reversal is always convergent and finite. This provides a pathwise definition of irreversibility for Itô processes that is agnostic to the state-dependence of the diffusivity. For one-dimensional systems we derive an explicit expression for our Lagrangian in terms of the drift and diffusivity, and find that our result differs from previously reported multiplicative-noise Lagrangians. We confirm our result by comparing to numerical simulations, and relate our theory to the Stratonovich Lagrangian for multiplicative noise. For one-dimensional systems, we discuss under which conditions the vanishing-radius limiting ratio of sojourn probabilities for a pair of forward and backward paths recovers the established pathwise entropy production. Finally, we demonstrate for our one-dimensional example system that the most probable tube for a barrier crossing depends sensitively on the tube radius, and hence on the tolerated amount of fluctuations around the smooth reference path.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源