论文标题

四分之一的锗量子处理器

A four-qubit germanium quantum processor

论文作者

Hendrickx, N. W., Lawrie, W. I. L., Russ, M., van Riggelen, F., de Snoo, S. L., Schouten, R. N., Sammak, A., Scappucci, G., Veldhorst, M.

论文摘要

使用先进的半导体制造位置量子点作为量子信息处理的有吸引力的平台来建造量子电路的前景。关于各种材料的广泛研究导致了砷耐甘油,硅和锗中的两量逻辑的演示。但是,在半导体设备中互连大量的Qubits仍然是一个重大挑战。在这里,我们演示了一个基于锗量子点中的孔旋转的四量量子处理器。此外,我们定义了两二个阵列中的量子点,并沿两个方向获得可控的耦合。量子逻辑是全电动实现的,并且可以将交换相互作用脉冲以自由编程单量,双Q量,三Q量和四个Qubit的操作,从而产生紧凑且高连接的电路。我们执行一个量子逻辑电路,该电路生成四个Quibent的Greenberger-Horne-Zeilinger状态,并通过结合动态解耦来获得连贯的演变。这些结果是用量子点迈出量子误差校正和量子模拟的重要一步。

The prospect of building quantum circuits using advanced semiconductor manufacturing positions quantum dots as an attractive platform for quantum information processing. Extensive studies on various materials have led to demonstrations of two-qubit logic in gallium arsenide, silicon, and germanium. However, interconnecting larger numbers of qubits in semiconductor devices has remained an outstanding challenge. Here, we demonstrate a four-qubit quantum processor based on hole spins in germanium quantum dots. Furthermore, we define the quantum dots in a two-by-two array and obtain controllable coupling along both directions. Qubit logic is implemented all-electrically and the exchange interaction can be pulsed to freely program one-qubit, two-qubit, three-qubit, and four-qubit operations, resulting in a compact and high-connectivity circuit. We execute a quantum logic circuit that generates a four-qubit Greenberger-Horne-Zeilinger state and we obtain coherent evolution by incorporating dynamical decoupling. These results are an important step towards quantum error correction and quantum simulation with quantum dots.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源