论文标题

在跨倾斜能力,sudakov重新召集和端点差异方面的分解效率有效理论

Factorization at Subleading Power, Sudakov Resummation and Endpoint Divergences in Soft-Collinear Effective Theory

论文作者

Liu, Ze Long, Mecaj, Bianka, Neubert, Matthias, Wang, Xing

论文摘要

从在软共线有效理论中描述的过程中描述的过程的第一个重新归一化的分解定理开始,我们讨论了Sudakov对数的重新召集,以改善了重新分析组中的此类过程。卷积积分中的端点差异(通常超出领导力之外)是通过系统地重新安排分解公式的正规化和去除的。我们详细研究了$ b $ quark诱导的higgs玻色子的$ h \toγγ$衰减,为此,我们以近代领导的对数顺序恢复了比率$ m_h/m_b $的大对数。我们还简要讨论了相关的$ gg \ to h $振幅。

Starting from the first renormalized factorization theorem for a process described at subleading power in soft-collinear effective theory, we discuss the resummation of Sudakov logarithms for such processes in renormalization-group improved perturbation theory. Endpoint divergences in convolution integrals, which arise generically beyond leading power, are regularized and removed by systematically rearranging the factorization formula. We study in detail the example of the $b$-quark induced $h\toγγ$ decay of the Higgs boson, for which we resum large logarithms of the ratio $M_h/m_b$ at next-to-leading logarithmic order. We also briefly discuss the related $gg\to h$ amplitude.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源