论文标题
不确定的运输不稳定
Uncertain Transport in Unsteady Flows
论文作者
论文摘要
我们通过识别随机运输的障碍和增强子来研究时间依赖性流动动力学的不确定性。这种拓扑分割与拉格朗日相干结构的理论密切相关,并且基于最近引入的数量,即扩散屏障强度(DBS)。 DBS的定义类似于有限的Lyapunov指数(FTLE),但在流动整合过程中结合了扩散。 DBS的高度脊表示随机传输屏障和增强子,即最小或最大扩散的材料表面。为了将这些概念应用于现实世界数据,我们代表了由随机微分方程在流中的不确定性,该方程由由高斯模型建模的确定性和随机分量组成。通过这种公式,我们将障碍物和增强子确定为随机运输的障碍,而无需进行昂贵的蒙特卡洛模拟,并且具有与FTLE相当的计算复杂性。此外,我们提出了一种互补的可视化,以传达拉格朗日参考框架中不确定性的绝对规模。这使我们能够研究现实世界数据集中的不确定性,例如,由于小偏差,数据减少或从多个集合运行中估算的较小。
We study uncertainty in the dynamics of time-dependent flows by identifying barriers and enhancers to stochastic transport. This topological segmentation is closely related to the theory of Lagrangian coherent structures and is based on a recently introduced quantity, the diffusion barrier strength (DBS). The DBS is defined similar to the finite-time Lyapunov exponent (FTLE), but incorporates diffusion during flow integration. Height ridges of the DBS indicate stochastic transport barriers and enhancers, i.e. material surfaces that are minimally or maximally diffusive. To apply these concepts to real-world data, we represent uncertainty in a flow by a stochastic differential equation that consists of a deterministic and a stochastic component modeled by a Gaussian. With this formulation we identify barriers and enhancers to stochastic transport, without performing expensive Monte Carlo simulation and with a computational complexity comparable to FTLE. In addition, we propose a complementary visualization to convey the absolute scale of uncertainties in the Lagrangian frame of reference. This enables us to study uncertainty in real-world datasets, for example due to small deviations, data reduction, or estimated from multiple ensemble runs.