论文标题

多对比赛

Diverse Pairs of Matchings

论文作者

Fomin, Fedor V., Golovach, Petr A., Jaffke, Lars, Philip, Geevarghese, Sagunov, Danil

论文摘要

我们启动了对图$ g $和整数$ k $的各种(最大/完美)匹配问题的研究,询问$ g $是否具有两个(最大/完美)的匹配,其对称差异至少为$ k $。如果$ k $是输入的一部分,则多种匹配(要求两次不一定是最大或完美的匹配)在一般图表上是NP的完整,我们考虑了两个受限制的变体。首先,我们表明,在两分图上,问题是多项式时间可溶剂,其次,我们证明了各种最大匹配对$ k $的参数化。我们通过表明各种匹配对$ \ Mathcal {o}(k^2)$ Vertices上有一个内核来解决这项工作。

We initiate the study of the Diverse Pair of (Maximum/ Perfect) Matchings problems which given a graph $G$ and an integer $k$, ask whether $G$ has two (maximum/perfect) matchings whose symmetric difference is at least $k$. Diverse Pair of Matchings (asking for two not necessarily maximum or perfect matchings) is NP-complete on general graphs if $k$ is part of the input, and we consider two restricted variants. First, we show that on bipartite graphs, the problem is polynomial-time solvable, and second we show that Diverse Pair of Maximum Matchings is FPT parameterized by $k$. We round off the work by showing that Diverse Pair of Matchings has a kernel on $\mathcal{O}(k^2)$ vertices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源