论文标题

多体扩展方法的天然轨道

Natural orbitals for many-body expansion methods

论文作者

Hoppe, J., Tichai, A., Heinz, M., Hebeler, K., Schwenk, A.

论文摘要

中型质量系统的核多体问题通常是使用波功能扩展方法来解决的,该方法建立在多体操作员相对于所选计算基础的第二定量表示。尽管可以提供各种计算基础选项,但最近已显示出扰动构建的天然轨道可显着改善多体应用,从而在大型无核壳体模型对角色中产生更快的模型空间收敛性和对基础参数的敏感性较低。这项工作提供了单粒子基集的详细比较和使用中级相似性重新归一化组方法在非扰动多体计算中自然轨道的系统基准。作为关键结果,我们发现在大型单粒子基础上的天然轨道的构建可以使在降低较低的尺寸的降低空间中执行多体计算,从而在实践中提供了大量的计算节省,从而有助于扩大对较重质量和较高准确性和较高准确性的初始方法的覆盖范围。

The nuclear many-body problem for medium-mass systems is commonly addressed using wave-function expansion methods that build upon a second-quantized representation of many-body operators with respect to a chosen computational basis. While various options for the computational basis are available, perturbatively constructed natural orbitals recently have been shown to lead to significant improvement in many-body applications yielding faster model-space convergence and lower sensitivity to basis set parameters in large-scale no-core shell model diagonalizations. This work provides a detailed comparison of single-particle basis sets and a systematic benchmark of natural orbitals in nonperturbative many-body calculations using the in-medium similarity renormalization group approach. As a key outcome we find that the construction of natural orbitals in a large single-particle basis enables for performing the many-body calculation in a reduced space of much lower dimension, thus offering significant computational savings in practice that help extend the reach of ab initio methods towards heavier masses and higher accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源