论文标题

量子位的相关信息置换量用于减少VQE中的Ansatz深度

Correlation-Informed Permutation of Qubits for Reducing Ansatz Depth in VQE

论文作者

Tkachenko, Nikolay V., Sud, James, Zhang, Yu, Tretiak, Sergei, Anisimov, Petr M., Arrasmith, Andrew T., Coles, Patrick J., Cincio, Lukasz, Dub, Pavel A.

论文摘要

变异量子本素(VQE)是一种解决近期基于栅极的量子计算机分子的电子结构问题的首选方法。但是,随着问题大小,电路深度有望显着增长。增加的深度既可以降低结果的准确性,又可以降低训练性。在这项工作中,我们提出了一种新的方法来减少Ansatz电路深度。我们的方法称为permvqe,为VQE添加了一个额外的优化循环,该循环列入量子位,以解决量子汉密尔顿的量子,从而最大程度地减少了基态下的远距离相关性。排列的选择基于互信息,这是旋转轨道中电子之间相互作用的量度。在量子芯片上编码强烈相互作用的自旋轨道自然会减少准备基态所需的电路深度。 For representative molecular systems, LiH, H$_2$, (H$_2$)$_2$, H$_4$, and H$_3^+$, we demonstrate for linear qubit connectivity that placing entangled qubits in close proximity leads to shallower depth circuits required to reach a given eigenvalue-eigenvector accuracy.这种方法可以扩展到任何量子连接性,并可以显着降低达到VQE中所需准确性所需的深度。此外,我们的方法可以应用于VQE以外的其他变异量子算法。

The Variational Quantum Eigensolver (VQE) is a method of choice to solve the electronic structure problem for molecules on near-term gate-based quantum computers. However, the circuit depth is expected to grow significantly with problem size. Increased depth can both degrade the accuracy of the results and reduce trainability. In this work, we propose a novel approach to reduce ansatz circuit depth. Our approach, called PermVQE, adds an additional optimization loop to VQE that permutes qubits in order to solve for the qubit Hamiltonian that minimizes long-range correlations in the ground state. The choice of permutations is based on mutual information, which is a measure of interaction between electrons in spin-orbitals. Encoding strongly interacting spin-orbitals into proximal qubits on a quantum chip naturally reduces the circuit depth needed to prepare the ground state. For representative molecular systems, LiH, H$_2$, (H$_2$)$_2$, H$_4$, and H$_3^+$, we demonstrate for linear qubit connectivity that placing entangled qubits in close proximity leads to shallower depth circuits required to reach a given eigenvalue-eigenvector accuracy. This approach can be extended to any qubit connectivity and can significantly reduce the depth required to reach a desired accuracy in VQE. Moreover, our approach can be applied to other variational quantum algorithms beyond VQE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源