论文标题
短时间的素数:启发式和计算
Primes in short intervals: Heuristics and calculations
论文作者
论文摘要
我们使用启发式推理来制定精确的猜想,以$ y $ a $ x $的长度为$ y $的时间范围,其中$ y \ ll(\ log x)^2 $。特别是,我们猜想最大值的增长速度令人惊讶地缓慢,$ y $范围从$ \ log x $到$(\ log x)^2 $。我们将证明我们的猜想在一定程度上得到了可用数据的支持,尽管不太好的猜想可能没有一些修改的空间。
We formulate, using heuristic reasoning, precise conjectures for the range of the number of primes in intervals of length $y$ around $x$, where $y\ll (\log x)^2$. In particular we conjecture that the maximum grows surprisingly slowly as $y$ ranges from $\log x$ to $(\log x)^2$. We will show that our conjectures are somewhat supported by available data, though not so well that there may not be room for some modification.