论文标题

高斯$β$ - 安装特征多项式的强近似:边缘状态和随机通风函数

Strong approximation of Gaussian $β$-ensemble characteristic polynomials: the edge regime and the stochastic Airy function

论文作者

Lambert, Gaultier, Paquette, Elliot

论文摘要

我们通过其转移矩阵复发研究了高斯$β$ for General $β> 0 $的特征多项式。我们表明,重新验证的特征多项式会在极限光谱边缘附近的随机整个功能收敛。这种随机的整个功能(称为随机通风函数)是独特的(缩放)$ l^2 $解决随机通风方程,这是一个二阶随机微分方程的家族。此外,我们获得了特征多项式和随机通风方程的解决方案之间的耦合,这使我们能够证明,对于任何$ε> 0 $,这两个函数在$ n^{ - 1/6 +ε} $上均匀地关闭,并且具有压倒性的可能性。这些结果基于作者的结果,其中分析了特征多项式的转移矩阵复发的双曲线部分。

We investigate the characteristic polynomials of the Gaussian $β$-ensemble for general $β>0$ through its transfer matrix recurrence. We show that the rescaled characteristic polynomial converges to a random entire function in a neighborhood of the edge of the limiting spectrum. This random entire function, called the stochastic Airy function, is the unique (up to scaling) $L^2$ solution to the stochastic Airy equation, a family of second order stochastic differential equations. Moreover, we obtain a coupling between the characteristic polynomial and a solution of the stochastic Airy equation which allows us to show that for any $ε>0$, these two function are uniformly close by $N^{-1/6 + ε}$ with overwhelming probability. These results build on the results of the authors in which the hyperbolic portion of the transfer matrix recurrence for the characteristic polynomial is analyzed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源