论文标题
域的本地理论及其(非共同)符号对应物
A local Theory of Domains and its (Noncommutative) Symbolic Counterpart
论文作者
论文摘要
如今,多齐塔斯通过多项式关系连接已被广泛接受。获得多氮杂之间关系的一种方法是考虑其生成系列以及这些生成系列之间的关系。这导致了\ cite {ghm22,bhn,cm}中最近描述的一系列生成系列的索引。但是,为了理解这种“聚类微积分”的扩展与谐波总和的世界之间的桥梁,必须做一个本地的领域理论,保留了准抛弃身份,泰勒的扩展和哈达玛德产品。在此贡献中,我们提出了该理论的草图版本。作为生成系列的一个示例,可以考虑欧拉γ函数,\ begen {eqnarray*}γ(1+z)= \ exp \ bigGl(-γz+\ sum_ {n \ ge2}ζζ(N \ ge2}ζ(n)(n)对于准剃须结构而言,发散的zeta值$ζ(1)$,是Euler的$γ$常数。同样,在\ cite {bhn}中,我们介绍了一个欧拉函数的家族,\ begin {eqnarray*}γ_{y_k}(y_k}(1+z)= \ exp \ exp \ biggl(\ sum_ sum_ {n \ ge1}} &\ mbox {for}&k \ ge2,y_k \ in y = \ {y_n \} _ {n \ ge1}。 {eqnarray*}在这项工作中,通过他们的分析方面完成了这项工作,一方面,我们确定了它们的存在以及它们的倒置是完整的事实。另一方面,使用相同的对称技术,我们给出了它们的零分布。
It is widely accepted nowadays that polyzetas are connected by polynomial relations. One way to obtain relations among polyzetas is to consider their generating series and the relations among these generating series. This leads to the indexation of the generating series of polylogarithms, recently described in \cite{GHM22,BHN,CM}. But, in order to understand the bridge between the extension of this "polylogarithmic calculus" and the world of harmonic sums, a local theory of domains has to be done, preserving quasi-shuffle identities, Taylor expansions and Hadamard products. In this contribution, we present a sketched version of this theory. As an example of generating series, one can consider the eulerian gamma function, \begin{eqnarray*} Γ(1+z)=\exp\biggl(-γz+\sum_{n\ge2} ζ(n)\dfrac{(-z)^n}{n}\biggr) {eqnarray*} and this may suggest to regularize the divergent zeta value $ζ(1)$, for the quasi-shuffle structure, as to be Euler's $γ$ constant. In the same vein, in \cite{BHN}, we introduce a family of eulerian functions, \begin{eqnarray*} Γ_{y_k}(1+z)=\exp\biggl(\sum_{n\ge1}ζ(kn)\dfrac{(-z^k)^n}{n}\biggr), &\mbox{for}&k\ge2,y_k\in Y=\{y_n\}_{n\ge1}. {eqnarray*} This being done, in this work, via their analytical aspects, we establish, on one side, their existence and the fact that their inverses are entire. On the other side, using the same symmetrization technique, we give their distributions of zeroes.