论文标题

凸的共同辅助表示3个群体组的表示

Convex co-compact representations of 3-manifold groups

论文作者

Islam, Mitul, Zimmer, Andrew

论文摘要

如果它具有有限的内核,并且其图像ACTS在真实的投影空间中正确凸面域上共同处理,则将有限生成的组的表示为凸出的通用线性群中,称为凸共划分。我们证明,只有在歧管是几何形状(带有欧几里得,双曲线或欧几里得$ \ times $ hyprobolic几何形状)或几何分解中的每个组件时,只有在歧管是几何形状(带有欧几里得,双曲线$ \ times $ \ times $ \ times $ \ times $ \ times $ \ time)的基本组中,几何学的基本组才能承认这种表示形式。在每种情况下,我们描述了此类示例的结构。

A representation of a finitely generated group into the projective general linear group is called convex co-compact if it has finite kernel and its image acts convex co-compactly on a properly convex domain in real projective space. We prove that the fundamental group of a closed irreducible orientable 3-manifold can admit such a representation only when the manifold is geometric (with Euclidean, Hyperbolic, or Euclidean $\times$ Hyperbolic geometry) or when every component in the geometric decomposition is hyperbolic. In each case, we describe the structure of such examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源