论文标题
重新访问学习分解的汇总后验
Revisiting Factorizing Aggregated Posterior in Learning Disentangled Representations
论文作者
论文摘要
在学习分解表示的问题中,有前途的方法之一是通过惩罚采样潜在变量的总相关性来分解聚合后验。但是,这种动机良好的策略具有一个盲点:采样的潜在表示与其相应的平均表示之间存在差异。在本文中,我们提供了一个理论上的解释,即采样表示的低总相关性不能保证均值均值较低的总相关性。实际上,我们证明,对于多元正常分布,任意高总相关的平均表示形式可以具有相应的采样表示,并具有有界的总相关性。我们还提出了一种消除这种差异的方法。实验表明,我们的模型可以学习一个平均表示形式,总相关性要低得多,因此分解了平均表示形式。此外,我们对分解聚合后验的局限性提供了详细的解释:因子分解。我们的工作表明了未来研究的潜在方向。
In the problem of learning disentangled representations, one of the promising methods is to factorize aggregated posterior by penalizing the total correlation of sampled latent variables. However, this well-motivated strategy has a blind spot: there is a disparity between the sampled latent representation and its corresponding mean representation. In this paper, we provide a theoretical explanation that low total correlation of sampled representation cannot guarantee low total correlation of the mean representation. Indeed, we prove that for the multivariate normal distributions, the mean representation with arbitrarily high total correlation can have a corresponding sampled representation with bounded total correlation. We also propose a method to eliminate this disparity. Experiments show that our model can learn a mean representation with much lower total correlation, hence a factorized mean representation. Moreover, we offer a detailed explanation of the limitations of factorizing aggregated posterior: factor disintegration. Our work indicates a potential direction for future research of disentangled learning.