论文标题
BATALIN-在霍基柴尔德共同学上的Vilkovisky代数结构广义Weyl代数
Batalin--Vilkovisky algebra structures on the Hochschild cohomology of generalized Weyl algebras
论文作者
论文摘要
本文致力于计算Batalin-Vilkovisky代数结构上偏斜的calabi-yau概括的Weyl代数。我们首先在复杂的水平上建立了van den bergh二元性。然后,根据Solotar等人的结果,我们将Kowalzig和Krähmer的方法应用于广义Weyl代数的Hochschild同源性,并通过Van Den Bergh二元性将同源信息转化为同源信息,从而获得了所需的Batalin-Vilkovilkovisky Algebra结构。最后,我们将结果应用于量子加权的投影线和量子球,并完全描述了为它们的Batalin-Vilkovisky代数结构。
This paper is devoted to the calculation of Batalin-Vilkovisky algebra structures on the Hochschild cohomology of skew Calabi-Yau generalized Weyl algebras. We firstly establish a Van den Bergh duality at the level of complex. Then based on the results of Solotar et al., we apply Kowalzig and Krähmer's method to the Hochschild homology of generalized Weyl algebras, and translate the homological information into cohomological one by virtue of the Van den Bergh duality, obtaining the desired Batalin-Vilkovisky algebra structures. Finally, we apply our results to quantum weighted projective lines and Podleś quantum spheres, and the Batalin-Vilkovisky algebra structures for them are described completely.