论文标题

平面中六行的模量空间的稳定对压实的交点理论

Intersection theory of the stable pair compactification of the moduli space of six lines in the plane

论文作者

Schock, Nolan

论文摘要

我们描述了$ \ Overline {M} _ {0,5} \ times \ Overline {M} _ {0,5} $和$ \ Mathbf {P}^2 \ times \ times \ times \ Mathbf {p}^2 $稳定稳定的$ \ + edrline(M Mathbf {p} 3, $ m(3,6)$的六行,$ \ mathbf {p}^2 $。这些爆炸序列可以分别视为Keel's和Kapranov的构建$ \ OVERLINE {M} _ {0,N} $的概括。我们使用这些爆炸序列来描述$ \ overline {m}(3,6)$的相交理论。特别是,我们表明,$ \ $ \叠加{m}(3,6)$的任何小分辨率的食物环具有类似于Keel的呈现的$ a^*(\ overline {m} _ {0,n})$的介绍,而$ \ edline {m}(3,6)$ smim smim cons的Chow Ring Ring and Chow Ring Ring cons的chow ring con是chow的一部分。我们还介绍了$ \ overline {m} _ {0,n} $的$ψ$类别的高维版本,并在$ \ overline {m}(3,6)$上描述它们的相交。最后,我们使用结果来获得卢克斯顿结果的独立证明,即$ \叠加{m}(3,6)$是$ m(3,6)$的日志规范压实。

We describe sequences of blowups of $\overline{M}_{0,5} \times \overline{M}_{0,5}$ and $\mathbf{P}^2 \times \mathbf{P}^2$ yielding a small resolution of the stable pair compactification $\overline{M}(3,6)$ of the moduli space $M(3,6)$ of six lines in $\mathbf{P}^2$. These blowup sequences can be viewed, respectively, as generalizations of Keel's and Kapranov's constructions of $\overline{M}_{0,n}$. We use these blowup sequences to describe the intersection theory of $\overline{M}(3,6)$. In particular, we show that the Chow ring of any small resolution of $\overline{M}(3,6)$ has a presentation analogous to Keel's presentation of $A^*(\overline{M}_{0,n})$, and the Chow ring of $\overline{M}(3,6)$ is an explicit subring of the Chow ring of one of these small resolutions. We also introduce higher-dimensional versions of the $ψ$-classes on $\overline{M}_{0,n}$, and describe their intersections on $\overline{M}(3,6)$. Finally, we use our results to obtain an independent proof of Luxton's result that $\overline{M}(3,6)$ is the log canonical compactification of $M(3,6)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源