论文标题

关于全球较弱的解决方案,用于2D完全可压缩的非抗性MHD系统

On global-in-time weak solutions to a 2D full compressible non-resistive MHD system

论文作者

Li, Yang, Sun, Yongzhong

论文摘要

在本文中,我们考虑了一个二维非耐药性磁流失动力学模型,考虑了绝对温度的波动。 Feireisl等人结合了狮子[20]开发的弱收敛方法。 [7,8]来自可压缩的Navier-Stokes( - 傅立叶)系统和Vasseur等人提出的可变还原的新技术。 [26],由Novotny等人精制。 [22]从可压缩的两流体模型中,较弱的解决方案在全球范围内与有限的能量初始数据一起存在。结果是第一个关于全球可溶解性,可在具有较大初始数据的多维中完全可压缩,粘性,非抗性磁流体动力系统。

In this paper, we consider a two-dimensional non-resistive magnetohydrodynamic model, taking the fluctuation of absolute temperature into account. Combining the method of weak convergence developed by Lions [20], Feireisl et al. [7, 8] from compressible Navier-Stokes(- Fourier) system and the new technique of variable reduction proposed by Vasseur et al. [26] and refined by Novotny et al. [22] from compressible two-fluid models, weak solutions are shown to exist globally in time with finite energy initial data. The result is the first one on global solvability to full compressible, viscous, non-resistive magnetohydrodynamic system in multi-dimensions with large initial data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源