论文标题

非线性schrödinger方程和普遍的海森堡不确定性原则违反了估计独立原则

Nonlinear Schrödinger equations and generalized Heisenberg uncertainty principle violating the principle of estimation independence

论文作者

Budiyono, Agung, Dipojono, Hermawan K.

论文摘要

基于透明的物理公理的重建量子力学的重建的优点之一是,它可以通过放松公理来自然概括量子力学。在这里,我们讨论了基于认知限制下给定位置的动量估算的操作方案,在一般认知框架内可能扩展量子力学的扩展。认知限制是通过在普朗克常数的顺序上通过全局无需的随机变量进行参数化的,普朗克常数是可分离的经典相空间变量的延伸。在估计方案中,针对特定的估计器和估计误差重建规范量子定律。在目前的工作中,保持了born的二次法律完整,我们通过假设更一般的估计错误类别来构建一类Schrödinger方程的非线性变体,并在估计方案中概括性不确定性原理。因此,Schrödinger方程的非线性和与海森堡不确定性原理的偏差在估计误差的概括方面具有共同的透明操作起源。然后,我们认为,一系列广泛的非线性和与海森堡不确定性原理的偏差是由于违反了标准量子力学尊重的估计独立性的估计误差而产生的。因此,该结果限制了量子力学的可能扩展,并提出了概括量子力学的方向,该量子力学符合估计独立性原则。

One of the advantages of a reconstruction of quantum mechanics based on transparent physical axioms is that it may offer insight to naturally generalize quantum mechanics by relaxing the axioms. Here, we discuss possible extensions of quantum mechanics within a general epistemic framework based on an operational scheme of estimation of momentum given positions under epistemic restriction. The epistemic restriction is parameterized by a global-nonseparable random variable on the order of Planck constant, an ontic extension to the separable classical phase space variables. Within the estimation scheme, the canonical quantum laws is reconstructed for a specific estimator and estimation error. In the present work, keeping the Born's quadratic law intact, we construct a class of nonlinear variants of Schrödinger equation and generalized Heisenberg uncertainty principle within the estimation scheme by assuming a more general class of estimation errors. The nonlinearity of the Schrödinger equation and the deviation from the Heisenberg uncertainty principle thus have a common transparent operational origin in terms of generalizations of estimation errors. We then argue that a broad class of nonlinearities and deviations from Heisenberg uncertainty principle arise from estimation errors violating a plausible inferential-causality principle of estimation independence which is respected by the standard quantum mechanics. This result therefore constrains possible extensions of quantum mechanics, and suggests directions to generalize quantum mechanics which comply with the principle of estimation independence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源