论文标题
根据中间边数的数量计数三元树,并分解为$(3/2)$ - ary树
Counting ternary trees according to the number of middle edges and factorizing into $(3/2)$-ary trees
论文作者
论文摘要
整数序列百科全书中的序列A120986根据节点的数量和中间边的数量计数三元树。使用一定的变异,可以考虑基础立方方程。这导致了Knuth在2014年的圣诞节演讲中介绍的$(3/2)$ - Ary Trees的概念的扩展。
The sequence A120986 in the Encyclopedia of Integer Sequences counts ternary trees according to the number of nodes and the number of middle edges. Using a certain substition, the underlying cubic equation can be factored. This leads to an extension of the concept of $(3/2)$-ary trees, introduced by Knuth in his christmas lecture from 2014.