论文标题

在拓扑绝缘子中强的自旋脱毛 - Paramagnet异质结构

Strong spin-dephasing in a topological insulator - paramagnet heterostructure

论文作者

Lapano, Jason, Mazza, Alessandro R., Li, Haoxiang, Mukherjee, Debangshu, Skoropata, Elizabeth M., Ok, Jong Mok, Miao, Hu, Moore, Robert G., Ward, Thomas Z., Eres, Gyula, Lee, Ho Nyung, Brahlek, Matthew

论文摘要

磁性材料和拓扑绝缘子之间的界面可以推动物质外来相的形成,并通过操纵强旋转极化转运而实现功能。在这里,我们报告说,拓扑绝缘子BI $ _2 $ se $ _3 $中的自旋摩托锁运输完全被与Kagome-lattice paramagnet散射,CO $ _7 $ SE $ _8 $完全抑制。 bi $ _2 $ se $ _ {3 - } $ co $ _7 $ se $ _ {8 - } $ bi $ _2 $ _2 $ se $ _3 $ trarayer异质结构是使用分子束外观上的。 Magnetotransport的测量结果表明,Co $ _7 $ SE $ _8 $的弱抗钙化效应的厚度与单层一样薄,表明具有强大的去向机制。 bi $ _ {2-x} $ co $ _x $ se $ _3 $电影,其中co处于非磁性$ 3^+$状态,表现出薄弱的反静脉化,可幸存到$ x = 0.5 $,与异性恋相比,这与杂货结构相比,表明了CO $ $^+^2+e元素的不良时光,以;这项工作突出了有关拓扑绝缘子界面中自旋偏振转运的几个重要点,以及如何将磁性材料与拓扑材料集成在一起,以实现外来相位和新型设备功能。

The interface between magnetic materials and topological insulators can drive the formation of exotic phases of matter and enable functionality through manipulation of the strong spin polarized transport. Here, we report that the spin-momentum-locked transport in the topological insulator Bi$_2$Se$_3$ is completely suppressed by scattering at a heterointerface with the kagome-lattice paramagnet, Co$_7$Se$_8$. Bi$_2$Se$_{3-}$Co$_7$Se$_{8-}$Bi$_2$Se$_3$ trilayer heterostructures were grown using molecular beam epitaxy. Magnetotransport measurements revealed a substantial suppression of the weak antilocalization effect for Co$_7$Se$_8$ at thicknesses as thin as a monolayer, indicating a strong dephasing mechanism. Bi$_{2-x}$Co$_x$Se$_3$ films, where Co is in a non-magnetic $3^+$ state, show weak antilocalization that survives to $x = 0.5$, which, in comparison with the heterostructures, suggests the unordered moments of the Co$^{2+}$ act as a far stronger dephasing element. This work highlights several important points regarding spin-polarized transport in topological insulator interfaces and how magnetic materials can be integrated with topological materials to realize both exotic phases as well as novel device functionality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源