论文标题

Codimension 2的实际和虚拟维

Actual and virtual dimension of codimension 2 general linear subspaces in $\mathbb{P}^n$

论文作者

Kupiec, Natalia

论文摘要

在论文中,我们计算了一个给定度量的空间的虚拟维度(由希尔伯特多项式定义),其中包含$ s $ codimension 2的$ \ mathbb {p}^n $中的$ s $ codimension 2一般线性子空间。我们使用Veneroni地图找到一个意外的Hypersurfaces家族(以B. Harbourne,J。Migliore,U。Nagel,Z。Teitler的风格),并严格证明并扩展了B. Harbourne,J。Migliore和H. Tutaj-Gasińska的论文中提出的示例。

In the paper we compute the virtual dimension (defined by the Hilbert polynomial) of a space of hypersurfaces of given degree containing $s$ codimension 2 general linear subspaces in $\mathbb{P}^n$. We use Veneroni maps to find a family of unexpected hypersurfaces (in the style of B. Harbourne, J. Migliore, U. Nagel, Z. Teitler) and rigorously prove and extend examples presented in the paper by B. Harbourne, J. Migliore and H. Tutaj-Gasińska.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源