论文标题
方格上多色臂概率的等效性
Equivalence of Polychromatic Arm Probabilities on the Square Lattice
论文作者
论文摘要
我们考虑在方格上的2D临界Bernoulli渗透。我们证明了一个近似的颜色切换引理,比较了不同多色颜色序列的K臂概率。该结果是[NOLIN08]中三角形晶格上的位点渗透众所周知的。为了处理双重晶格引起的并发症,我们引入了转变的转换,以在原始晶格和双重晶格之间转换手臂。
We consider 2d critical Bernoulli percolation on the square lattice. We prove an approximate color-switching lemma comparing k-arm probabilities for different polychromatic color sequences. This result is well-known for site percolation on the triangular lattice in [Nolin08]. To handle the complications arising from the dual lattice, we introduce a shifting transformation to convert arms between the primal and dual lattices.