论文标题
相对Reshetikhin-turaev不变,双曲线锥度指标和离散傅立叶变换II
Relative Reshetikhin-Turaev invariants, hyperbolic cone metrics and discrete Fourier transforms II
论文作者
论文摘要
我们证明了[29]在所有对(M,K)中提出的相对Reshetikhin-turaev的体积猜想,因此M \ k在几乎所有可能的锥角度的S^3中的s^3中的s^3中的补充是同构的。
We prove the Volume Conjecture for the relative Reshetikhin-Turaev invariants proposed in [29] for all pairs (M,K) such that M\K is homeomorphic to the complement of the figure-8 knot in S^3 with almost all possible cone angles.