论文标题

揭示介电陷阱状态在电容耦合射频等离子体上的作用:动态充电行为

Unveiling the role of dielectric trap states on capacitively coupled radio-frequency plasma discharge: dynamic charging behaviors

论文作者

Zhang, Shu, Sun, Guang-Yu, Arnas, Volčokas, Zhang, Guan-Jun, Sun, An-Bang

论文摘要

介电边界材料中电荷陷阱状态对电容耦合射频等离子体排放的影响,在细胞/蒙特卡洛碰撞模拟中使用理论和粒子进行了研究。发现壁物质的陷阱状态主要通过不同的离子诱导的二级电子发射(参见)系数操纵放电性能,以响应在固体边界内积累的动态表面电荷。全面的参见模型考虑了表面充电的模型,该模型首先建立了,该模型结合了价带电子分布,电子陷阱密度以及通过螺旋钻中和和去激发的电荷捕获。进行理论分析以揭示陷阱状态对鞘溶液,稳定性,等离子体密度和温度,粒子和功率平衡等的影响。理论工作得到了模拟结果的支持,显示了平均无线电频率鞘的降低,因为充电依赖性发射系数增加了。随着气体压力的增加,观察到了最大电离速率从散装等离子体中心到等离子体剥离界面的变化,这也受电极材料的陷阱状态的影响,在这些电极材料的陷阱状态下,在较低的压力下发生了较低的压力。另外,事实证明,电荷陷阱有助于创建具有几何对称结构的不对称血浆放电,这种效应在γ模式放电中更为明显。

The influence of charge trap states in the dielectric boundary material on capacitively coupled radio frequency plasma discharge is investigated with theory and Particle in cell/Monte Carlo Collision simulation. It is found that the trap states of the wall material manipulated discharge properties mainly through the varying ion induced secondary electron emission (SEE) coefficient in response to dynamic surface charges accumulated within solid boundary. A comprehensive SEE model considering surface charging is established first, which incorporates the valence band electron distribution, electron trap density, and charge trapping through Auger neutralization and de-excitation. Theoretical analysis is carried out to reveal the effects of trap states on sheath solution, stability, plasma density and temperature, particle and power balance, etc. The theoretical work is supported by simulation results, showing the reduction of the mean radio frequency sheath potential as charging-dependent emission coefficient increases. As the gas pressure increases, a shift of the maximum ionization rate from the bulk plasma center to the plasma-sheath interface is observed, which is also influenced by the trap states of the electrode material where the shift happens at a lower pressure with traps considered. In addition, charge traps are proved helpful for creating asymmetric plasma discharges with geometrically symmetric structures, such effect is more pronounced in γ mode discharges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源