论文标题

具有低硬件要求的类似于重新连接的体系结构

ResNet-like Architecture with Low Hardware Requirements

论文作者

Limonova, Elena, Alfonso, Daniil, Nikolaev, Dmitry, Arlazarov, Vladimir V.

论文摘要

现代识别系统中计算最密集的部分之一是对深层神经网络的推断,用于图像分类,细分,增强和识别。边缘计算的日益普及使我们寻找减少其移动设备和嵌入式设备的时间的方法。减少神经网络推理时间的一种方法是修改神经元模型,以使其在特定设备上的计算效率更高。一个模型的例子是双极形态神经元模型。双极形态神经元基于替换乘法用加法和最大作用的概念。该模型已被证明用于使用LENET样体系结构的简单图像分类[1]。在本文中,我们引入了通过将其层转换为躁郁症形态学的复杂重新结构结构获得的双相形态重新结构(BM-RESNET)模型。我们将BM Resnet应用于MNIST和CIFAR-10数据集的图像分类,仅中等准确性从99.3%降至99.1%,从85.3%降至85.1%。我们还估计了所得模型的计算复杂性。我们表明,对于大多数重新系统层,所考虑的模型需要少量逻辑门的2.1-2.9倍,而延迟则降低了15-30%。

One of the most computationally intensive parts in modern recognition systems is an inference of deep neural networks that are used for image classification, segmentation, enhancement, and recognition. The growing popularity of edge computing makes us look for ways to reduce its time for mobile and embedded devices. One way to decrease the neural network inference time is to modify a neuron model to make it moreefficient for computations on a specific device. The example ofsuch a model is a bipolar morphological neuron model. The bipolar morphological neuron is based on the idea of replacing multiplication with addition and maximum operations. This model has been demonstrated for simple image classification with LeNet-like architectures [1]. In the paper, we introduce a bipolar morphological ResNet (BM-ResNet) model obtained from a much more complex ResNet architecture by converting its layers to bipolar morphological ones. We apply BM-ResNet to image classification on MNIST and CIFAR-10 datasets with only a moderate accuracy decrease from 99.3% to 99.1% and from 85.3% to 85.1%. We also estimate the computational complexity of the resulting model. We show that for the majority of ResNet layers, the considered model requires 2.1-2.9 times fewer logic gates for implementation and 15-30% lower latency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源